skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The overlapping molecular pathophysiology of Alzheimer’s Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD. FTD shared 99.9% of its nodes with ALS and AD; AD shared 64.2% of its nodes with FTD and ALS; and ALS shared 68.3% of its nodes with AD and FTD. The results were validated and mapped to functional biological processes using supervised human supervision and an external large language model. The overall percentages of mapped intersecting biological processes were as follows: inflammation and immune response, 19%; synapse and neurotransmission, 19%; cell cycle, 15%; protein aggregation, 12%; membrane regulation, 11%; stress response and regulation, 9%; and gene regulation, 4%. Once normalized for node count, biological mappings for cell cycle regulation and stress response were more prominent in the intersection of AD and FTD. Protein aggregation, gene regulation, and energetics were more prominent in the intersection of ALS and FTD. Synapse and neurotransmission, membrane regulation, and inflammation and immune response were greater at the intersection of AD and ALS. Given the extensive molecular pathophysiology overlap, small differences in regulation, genetic, or environmental factors likely shape the underlying expressed disease phenotype. The results help prioritize testable hypotheses for future clinical or experimental research. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. This work introduces TrialSieve, a novel framework for biomedical information extraction that enhances clinical meta-analysis and drug repurposing. By extending traditional PICO (Patient, Intervention, Comparison, Outcome) methodologies, TrialSieve incorporates hierarchical, treatment group-based graphs, enabling more comprehensive and quantitative comparisons of clinical outcomes. TrialSieve was used to annotate 1609 PubMed abstracts, 170,557 annotations, and 52,638 final spans, incorporating 20 unique annotation categories that capture a diverse range of biomedical entities relevant to systematic reviews and meta-analyses. The performance (accuracy, precision, recall, F1-score) of four natural-language processing (NLP) models (BioLinkBERT, BioBERT, KRISSBERT, PubMedBERT) and the large language model (LLM), GPT-4o, was evaluated using the human-annotated TrialSieve dataset. BioLinkBERT had the best accuracy (0.875) and recall (0.679) for biomedical entity labeling, whereas PubMedBERT had the best precision (0.614) and F1-score (0.639). Error analysis showed that NLP models trained on noisy, human-annotated data can match or, in most cases, surpass human performance. This finding highlights the feasibility of fully automating biomedical information extraction, even when relying on imperfectly annotated datasets. An annotator user study (n = 39) revealed significant (p < 0.05) gains in efficiency and human annotation accuracy with the unique TrialSieve tree-based annotation approach. In summary, TrialSieve provides a foundation to improve automated biomedical information extraction for frontend clinical research. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Amyotrophic lateral sclerosis (ALS) has an interactive, multifactorial etiology that makes treatment success elusive. This study evaluates how regulatory dynamics impact disease progression and treatment. Computational models of wild-type (WT) and transgenic SOD1-G93A mouse physiology dynamics were built using the first-principles-based first-order feedback framework of dynamic meta-analysis with parameter optimization. Two in silico models were developed: a WT mouse model to simulate normal homeostasis and a SOD1-G93A ALS model to simulate ALS pathology dynamics and their response to in silico treatments. The model simulates functional molecular mechanisms for apoptosis, metal chelation, energetics, excitotoxicity, inflammation, oxidative stress, and proteomics using curated data from published SOD1-G93A mouse experiments. Temporal disease progression measures (rotarod, grip strength, body weight) were used for validation. Results illustrate that untreated SOD1-G93A ALS dynamics cannot maintain homeostasis due to a mathematical oscillating instability as determined by eigenvalue analysis. The onset and magnitude of homeostatic instability corresponded to disease onset and progression. Oscillations were associated with high feedback gain due to hypervigilant regulation. Multiple combination treatments stabilized the SOD1-G93A ALS mouse dynamics to near-normal WT homeostasis. However, treatment timing and effect size were critical to stabilization corresponding to therapeutic success. The dynamics-based approach redefines therapeutic strategies by emphasizing the restoration of homeostasis through precisely timed and stabilizing combination therapies, presenting a promising framework for application to other multifactorial neurodegenerative diseases. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026